Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Neurosci Lett ; 801: 137160, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36858306

ABSTRACT

OBJECTIVES: The electroencephalogram and magnetic field primary somatosensory cortex (S1)-derived components are attenuated before and during motor tasks compared to the resting state, a phenomenon called gating; however, the S1 response after a motor task has not been well studied. We aimed to investigate sensory information processing immediately after motor tasks using magnetoencephalography. MATERIALS AND METHODS: We investigated sensory information processing immediately after finger movement using magnetoencephalography in 14 healthy adults. Volunteers performed a simple reaction task where they were required to press a button when they received a cue. In parallel, electrical stimulation to the right index finger was applied at regular intervals to detect the magnetic brain field changes. The end of the motor task timing was defined using the event-related synchronization (ERS) appearance latency in the brain magnetic field's beta band around the primary motor cortex. The ERS appearance latency and the sensory stimuli timing applied every 500 ms were synchronized over the experimental system timeline. We examined whether there was a difference in the S1 somatosensory evoked field responses between the ERS emergence and ERS disappearance phase, focusing on the N20m-P35m peak-to-peak amplitude (N20m-P35m amplitude) value. A control experiment was also conducted in which only sensory stimulation was applied with no motor task. RESULTS: The N20m-P35m mean amplitude value was significantly higher in the ERS emergence phase (15.81 nAm; standard deviation [SD], 6.54 nAm) than in the ERS disappearance phase (13.54 nAm; SD, 5.12 nAm) (p < 0.05) and the control (12.08 nAm, SD 5.61 nAm) (p = 0.013). No statistically significant differences were identified between the ERS disappearance phase and the control (p = 0.281). CONCLUSIONS: The S1 sensitivity may increase rapidly after exiting from the gating influence in S1 (after completing a motor task).


Subject(s)
Magnetoencephalography , Somatosensory Cortex , Adult , Humans , Somatosensory Cortex/physiology , Electroencephalography , Fingers/physiology , Movement/physiology , Electric Stimulation
2.
Neurosci Lett ; 799: 137103, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36738956

ABSTRACT

Impairments of the central nervous system, such as stroke, brain trauma, and spinal cord injury (SCI), cannot be reversed using current treatment options. Herein, we compared the characteristics of rat cranial bone-derived mesenchymal stem cells (rcMSCs) and rat bone marrow-derived mesenchymal stem cells (rbMSCs). We also investigated the therapeutic effects of intravenously administered rcMSCs and rbMSCs in a rat model of cervical SCI (cSCI) and elucidated its undrelying mechanism. Comprehensive comparative bioinformatics analysis of rcMSCs and rbMSCs RNA sequencing revealed that genes associated with leukocyte transendothelial migration and chemokine signaling were significantly downregulated in rcMSCs. Rats were divided into three groups that received intrtravenous administration of rcMSC, rbMSC, or phosphate-buffered saline (control) 24 h after cSCI. The rcMSC-treated group showed improved functional recovery over the rbMSC-treated and control groups, and reduced lesion volume compared with the control group. The mRNA expression of nitric oxide synthase 2 at the spinal cord lesion site was significantly higher in the rcMSC-treated group than in the control and rbMSCs-treated groups, whereas that of transforming growth factor-ß was significantly higher in the rcMSC-treated group compared to that in the control group. The transcriptome data indicated that rcMSCs and rbMSCs differentially affect inflammation. The intravenous administration of rcMSCs contributed to functional recovery and lesion reduction in cSCI. The rcMSCs have the potential to induce an anti-inflammatory environment in cSCI.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Diseases , Spinal Cord Injuries , Stroke , Rats , Animals , Spinal Cord Injuries/pathology , Spinal Cord Diseases/metabolism , Mesenchymal Stem Cells/metabolism , Stroke/metabolism , Central Nervous System , Recovery of Function , Spinal Cord/pathology
3.
J Neurosurg ; 139(3): 840-847, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36790020

ABSTRACT

OBJECTIVE: Cerebral contusion models of cold-induced injury are widely used in animal studies. However, owing to the difficulty of longitudinal recording of electrical stimulation transcranial motor evoked potential (tcMEP) in brain injury models of incomplete paralysis, to the authors' knowledge there have been no multimodal evaluations of cold-induced brain injury models that have included motor function and electrophysiological and histological evaluations. Therefore, in this study the authors aimed to perform a multimodal evaluation of a rat model of brain injury. METHODS: A brain injury model in female rats and a tcMEP recording technique based on the authors' previous study were established to enable multifaceted analysis, including longitudinal electrophysiological evaluation. RESULTS: The model showed incomplete paralysis of the right forelimb. Motor function showed recovery over time, and histological evaluation showed tissue changes associated with cerebral contusion. In addition, stable tcMEP waveforms were recorded before and after surgery and up to 4 weeks after injury. The tcMEP amplitude decreased significantly after injury and recovered over time. Furthermore, the amplitudes at 1, 7, and 14 days after injury were significantly lower than those at preinjury (p < 0.0006, p < 0.0007, and p < 0.0067, respectively). CONCLUSIONS: In the present study, the authors established a novel cold-induced brain injury rat model and technique that allowed for the evaluation of longitudinal tcMEP recording and demonstrated that multimodal evaluation for brain injury can be performed. This model can potentially be applied in future investigations of various therapies for brain injury.


Subject(s)
Brain Contusion , Rats , Female , Animals , Evoked Potentials, Motor/physiology , Paralysis
4.
Regen Ther ; 22: 109-114, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36712961

ABSTRACT

Introduction: The regulation of stem cell differentiation is important in determining the quality of transplanted cells in regenerative medicine. Physical stimuli are involved in regulating stem cell differentiation, and in particular, research on the regulation of differentiation using gravity is an attractive choice. We have shown that microgravity is useful for maintaining undifferentiated mesenchymal stem cells (MSCs). However, the effects of hypergravity on the differentiation of MSCs, especially on neural differentiation related to neural regeneration, have not been elucidated. Methods: We induced neural differentiation of human bone marrow-derived MSCs (hbMSCs) for 10 days under normal gravity (1G) or hypergravity (3G) conditions using a gravity controller, Gravite®. HbMSCs were collected, and cell number and viability were measured 3 and 10 days after induction. RNA was also extracted from the collected hbMSCs, and the expression of neuron-associated genes and regulator markers of neural differentiation was analyzed using real-time polymerase chain reaction (PCR). Additionally, we evaluated the NF-M-positive cell rate 10 days after induction using immunofluorescent staining. Results: Neural gene expression and the NF-M-positive cell rate were increased in hbMSCs under the 3G condition 10 days after induction. mRNA expression of RNA binding motif protein 4 (RBM4) and pyruvate kinase M 1 (PKM1) in the 3G condition was also higher than that in the 1G group. Conclusions: Hypergravity can enhance RBM4 and PKM1, promoting the neural differentiation of hbMSCs.

5.
Sci Rep ; 12(1): 20422, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443336

ABSTRACT

Evaluation of motor function ischemic stroke rat models includes qualitative assessments such as the modified neurological severity score (mNSS). However, mNSS cannot evaluate the function of forelimbs and hindlimbs separately. We quantitatively assessed motor function in a middle cerebral artery occlusion (MCAO) rat model of ischemic stroke. We recorded transcranial stimulation motor evoked potentials (tcMEPs) from MCAO rats and measured the changes in onset latency and amplitude at the forelimbs and hindlimbs up to 28 days after stroke. All MCAO subjects showed hemiparesis. The amplitudes of tcMEPs in both fore- and hindlimbs were inversely correlated with mNSS scores, but the amplitudes in the forelimbs improved later than those in the hindlimbs. The onset latency of tcMEPs in the forelimbs and hindlimbs remained almost unchanged during the follow-up period. Our results showed the differences in tcMEPs amplitude recovery times between the forelimbs and hindlimbs after MCAO, which emphasizes the importance of separately evaluating forelimbs and hindlimbs in post-ischemic stroke models. This minimally invasive and longitudinal quantitative method could be useful for further research on diseases and neurogenesis.


Subject(s)
Ischemic Stroke , Stroke , Rats , Animals , Evoked Potentials, Motor , Forelimb , Hindlimb
6.
Front Neurorobot ; 16: 993939, 2022.
Article in English | MEDLINE | ID: mdl-36238427

ABSTRACT

Ankle foot orthoses are mainly applied to provide stability in the stance phase and adequate foot clearance in the swing phase; however, they do not sufficiently assist during the entire gait cycle. On the other hand, robotic-controlled orthoses can provide mechanical assistance throughout the phases of the gait cycle. This study investigated the effect of ankle control throughout the gait cycle using an ankle joint walking assistive device under five different robotic assistance conditions: uncontrolled, dorsiflexion, and plantar flexion controlled at high and low speeds in the initial loading phase. Compared with the no-control condition, the plantar flexion condition enhanced knee extension and delayed the timing of ankle dorsiflexion in the stance phase; however, the opposite effect occurred under the dorsiflexion condition. Significant differences in the trailing limb angle and minimum toe clearance were also observed, although the same assistance was applied from the mid-stance phase to the initial swing phase. Ankle assistance in the initial loading phase affected the knee extension and ankle dorsiflexion angle during the stance phase. The smooth weight shift obtained might have a positive effect on lifting the limb during the swing phase. Robotic ankle control may provide appropriate assistance throughout the gait cycle according to individual gait ability.

7.
PLoS One ; 17(8): e0272526, 2022.
Article in English | MEDLINE | ID: mdl-35930554

ABSTRACT

Transcranial electrically stimulated motor-evoked potentials (tcMEPs) are widely used to evaluate motor function in humans and animals. However, the relationship between tcMEPs and the recovery of paralysis remains unclear. We previously reported that transplantation of mesenchymal stem cells to a spinal cord injury (SCI) rat model resulted in various degrees of recovery from paraplegia. As a continuation of this work, in the present study, we aimed to establish the longitudinal electrophysiological changes in this SCI rat model after mesenchymal stem cell transplantation. SCI rats were established using the weight-drop method. The model rats were transvenously transplanted with two types of mesenchymal stem cells (MSCs), one derived from rat cranial bones and the other from the bone marrow of the femur and tibia bone, 24 h after SCI. A phosphate-buffered saline (PBS) group that received only PBS was also created for comparison. The degree of paralysis was evaluated over 28 days using the Basso-Beattie-Bresnahan (BBB) scale and inclined plane task score. Extended tcMEPs were recorded using a previously reported bone-thinning technique, and the longitudinal electrophysiological changes in tcMEPs were investigated. In addition, the relationship between the time course of recovery from paralysis and reappearance of tcMEPs was revealed. The appearance of the tcMEP waveform was earlier in MSC-transplanted rats than in PBS-administered rats (earliest date was 7 days after SCI). The MEP waveforms also appeared at approximately the same level on the BBB scale (average score, 11 points). Ultimately, this study can help enhance our understanding of the relationship between neural regeneration and tcMEP recording. Further application of tcMEP in regenerative medicine research is expected.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Animals , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Paralysis/metabolism , Rats , Recovery of Function/physiology , Spinal Cord
8.
J Mot Behav ; 54(3): 344-353, 2022.
Article in English | MEDLINE | ID: mdl-34558390

ABSTRACT

A close-fitting assisted walking device (RE-Gait) designed to assist ankle movements might be a novel approach for acquiring the forefoot rocker function in the gait cycle. The purpose of the present study was to investigate the effects of using RE-Gait by evaluating the intramuscular coherence (IMC) of the two parts of the tibialis anterior muscles (TA), which could indicate whether a common synaptic drive is present. Seventeen healthy volunteers walked on a treadmill at a comfortable speed before, during, and immediately after 15-minute RE-Gait intervention. After RE-Gait intervention, IMC of the two parts of the TA muscles in the beta frequency band in the initial swing phase was significantly enhanced during RE-Gait intervention. In addition, IMCs in the beta and low-gamma frequency bands were significantly correlated with the enhancement ratio of the step length. These results suggest that robotic ankle plantar flexion and dorsiflexion assistance in the initial swing phase may be effective for improving gait function with enhancement of the functioning of the sensorimotor loop.


Subject(s)
Ankle , Robotic Surgical Procedures , Ankle/physiology , Biomechanical Phenomena , Electromyography/methods , Gait/physiology , Humans , Muscle, Skeletal/physiology , Walking/physiology
9.
Stem Cell Investig ; 8: 21, 2021.
Article in English | MEDLINE | ID: mdl-34815976

ABSTRACT

BACKGROUND: Intrinsic factors related to self-renewal regulatory factors in hematopoietic stem cells are well known; however, limited information is available on extrinsic factors, such as the cell environment. Therefore, in this study, we analyzed the regulatory mechanism of hematopoietic stem cell self-renewal, focusing on the osteoblastic niche, and examined how adherence to osteoblasts affects stem cell differentiation. METHODS: For this experimental study, we developed a co-culture system for hematopoietic stem cells and osteoblasts, such that cells adhered to osteoblasts can be separated from those that do not. Murine Sca1-positive cells were separated into groups according to whether they were attached to osteoblasts or detached from osteoblasts, and each group was then subjected to colony assays and bone marrow transplantation experiments. RESULTS: Adhered Sca1-positive cells developed more secondary colonies than non-adhered Sca1-positive cells. Furthermore, in bone marrow transplantation experiments, adhered Sca1-positive cells showed successful engraftment. We explored the role of Polycomb genes in the regulation of cell fate and found that self-renewing cells attached to osteoblasts had high Bmi-1 expression and low Mel-18 expression, while this expression was reversed in differentiating cells. CONCLUSIONS: Our results suggest that hematopoietic stem cells self-renew when they remain in osteoblastic niches after cell division. Further, when stem cells leave the niches, they undergo differentiation.

10.
Sci Rep ; 11(1): 21907, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34754046

ABSTRACT

Cell-based therapy using mesenchymal stem cells (MSCs) is a novel treatment strategy for spinal cord injury (SCI). MSCs can be isolated from various tissues, and their characteristics vary based on the source. However, reports demonstrating the effect of transplanted rat cranial bone-derived MSCs (rcMSCs) on rat SCI models are lacking. In this study, we determined the effect of transplanting rcMSCs in rat SCI models. MSCs were established from collected bone marrow and cranial bones. SCI rats were established using the weight-drop method and transplanted intravenously with MSCs at 24 h post SCI. The recovery of motor function and hindlimb electrophysiology was evaluated 4 weeks post transplantation. Electrophysiological recovery was evaluated by recording the transcranial electrical stimulation motor-evoked potentials. Tissue repair after SCI was assessed by calculating the cavity ratio. The expression of genes involved in the inflammatory response and cell death in the spinal cord tissue was assessed by real-time polymerase chain reaction. The transplantation of rcMSCs improved motor function and electrophysiology recovery, and reduced cavity ratio. The expression of proinflammatory cytokines was suppressed in the spinal cord tissues of the rats that received rcMSCs. These results demonstrate the efficacy of rcMSCs as cell-based therapy for SCI.


Subject(s)
Mesenchymal Stem Cell Transplantation , Skull/cytology , Spinal Cord Injuries/therapy , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation Mediators/metabolism , Rats , Recovery of Function , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology
11.
J Alzheimers Dis ; 83(4): 1563-1601, 2021.
Article in English | MEDLINE | ID: mdl-34487051

ABSTRACT

Neurological disorders significantly impact the world's economy due to their often chronic and life-threatening nature afflicting individuals which, in turn, creates a global disease burden. The Group of Twenty (G20) member nations, which represent the largest economies globally, should come together to formulate a plan on how to overcome this burden. The Neuroscience-20 (N20) initiative of the Society for Brain Mapping and Therapeutics (SBMT) is at the vanguard of this global collaboration to comprehensively raise awareness about brain, spine, and mental disorders worldwide. This paper aims to provide a comprehensive review of the various brain initiatives worldwide and highlight the need for cooperation and recommend ways to bring down costs associated with the discovery and treatment of neurological disorders. Our systematic search revealed that the cost of neurological and psychiatric disorders to the world economy by 2030 is roughly $16T. The cost to the economy of the United States is $1.5T annually and growing given the impact of COVID-19. We also discovered there is a shortfall of effective collaboration between nations and a lack of resources in developing countries. Current statistical analyses on the cost of neurological disorders to the world economy strongly suggest that there is a great need for investment in neurotechnology and innovation or fast-tracking therapeutics and diagnostics to curb these costs. During the current COVID-19 pandemic, SBMT, through this paper, intends to showcase the importance of worldwide collaborations to reduce the population's economic and health burden, specifically regarding neurological/brain, spine, and mental disorders.


Subject(s)
Global Burden of Disease , International Cooperation , Mental Disorders , Nervous System Diseases , COVID-19/epidemiology , Global Burden of Disease/organization & administration , Global Burden of Disease/trends , Global Health/economics , Global Health/trends , Humans , Mental Disorders/economics , Mental Disorders/epidemiology , Mental Disorders/therapy , Nervous System Diseases/economics , Nervous System Diseases/epidemiology , Nervous System Diseases/therapy , Neurosciences/methods , Neurosciences/trends , SARS-CoV-2
12.
Stem Cells Dev ; 30(17): 865-875, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34148410

ABSTRACT

Cell-based therapies with mesenchymal stem cells (MSCs) are considered as promising strategies for spinal cord injury (SCI). MSCs have unique characteristics due to differences in the derived tissues. However, relatively few studies have focused on differences in the therapeutic effects of MSCs derived from different tissues. In this study, the therapeutic effects of adipose tissue-derived MSCs, bone marrow-derived MSCs, and cranial bone-derived MSCs (cMSCs) on chronic SCI model rats were compared. MSCs were established from the collected adipose tissue, bone marrow, and cranial bone. Neurotrophic factor expression of each MSC type was analyzed by real-time PCR. SCI rats were established using the weight-drop method and transplanted intravenously with MSCs at 4 weeks after SCI. Hindlimb motor function was evaluated from before injury to 4 weeks after transplantation. Endogenous neurotrophic factor and neural repair factor expression in spinal cord (SC) tissue were examined by real-time PCR and western blot analyses. Although there were no differences in the expression levels of cell surface markers and multipotency, expression of Bdnf, Ngf, and Sort1 (Nt-3) was relatively higher in cMSCs. Transplantation of cMSCs improved motor function of chronic SCI model rats. Although there was no difference in the degree of engraftment of transplanted cells in the injured SC tissue, transplantation of cMSCs enhanced Bdnf, TrkB, and Gap-43 messenger RNA expression and synaptophysin protein expression in injured SC tissue. As compared with MSCs derived other tissues, cMSCs highly express many neurotrophic factors, which improved motor function in chronic SCI model rats by promoting endogenous neurotrophic and neural plasticity factors. These results demonstrate the efficacy of cMSCs in cell-based therapy for chronic SCI.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Adipose Tissue , Animals , Mesenchymal Stem Cell Transplantation/methods , Rats , Spinal Cord , Spinal Cord Injuries/metabolism
13.
Sci Rep ; 11(1): 12496, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127706

ABSTRACT

Transcranial electrical stimulated motor-evoked potentials (tcMEPs) are widely used to evaluate motor function in humans, and even in animal studies, tcMEPs are used to evaluate neurological dysfunction. However, there is a dearth of reports on extended tcMEP recordings in both animal models and humans. Therefore, this study examined a new technique for stably recording tcMEPs over several weeks in six healthy female Sprague-Dawley rats. We thinned the skull bone using the skull base and spinal surgery technique to reduce electrical resistance for electrical stimulation. tcMEPs were recorded on days 1, 7, 14, 21, and 28 after surgery. The onset latency and amplitude of tcMEPs from the hindlimbs were recorded and evaluated, and histological analysis was performed. Stable amplitude and onset latency could be recorded over several weeks, and histological analysis indicated no complications attributable to the procedure. Thus, our novel technique allows for less invasive, safer, easier, and more stable extended tcMEP recordings than previously reported techniques. The presently reported technique may be applied to the study of various nerve injury models in rats: specifically, to evaluate the degree of nerve dysfunction and recovery in spinal cord injury, cerebral infarction, and brain contusion models.


Subject(s)
Evoked Potentials, Motor/physiology , Skull/surgery , Transcranial Direct Current Stimulation/methods , Animals , Brain Contusion/diagnosis , Brain Contusion/physiopathology , Brain Contusion/surgery , Cerebral Infarction/diagnosis , Cerebral Infarction/physiopathology , Cerebral Infarction/surgery , Disease Models, Animal , Electromyography , Female , Hindlimb/physiology , Humans , Monitoring, Intraoperative/methods , Neurosurgical Procedures/methods , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/surgery
14.
PLoS One ; 15(10): e0240809, 2020.
Article in English | MEDLINE | ID: mdl-33057413

ABSTRACT

The effectiveness of a simulated microgravity environment as a novel method for preserving the freshness of vegetables was investigated. Three types of vegetables were selected: vegetable soybean, mung bean sprouts, and white radish sprouts. These selected vegetables were fixed on a three-dimensional rotary gravity controller, rotated slowly. The selected vegetables were stored at 25°C and 66% of relative humidity for 9, 6, or 5 d while undergoing this process. The simulated microgravity was controlled utilizing a gravity controller around 0 m s-2. The mung bean sprouts stored for 6 d under simulated microgravity conditions maintained higher thickness levels than the vegetable samples stored under normal gravity conditions (9.8 m s-2) for the same duration. The mass of all three items decreased with time without regard to the gravity environment, though the samples stored within the simulated microgravity environment displayed significant mass retention on and after 3 d for mung bean sprout samples and 1 d for white radish sprout samples. In contrast, the mass retention effect was not observed in the vegetable soybean samples. Hence, it was confirmed that the mass retention effect of microgravity was limited to sprout vegetables. As a result of analysis harnessing a mathematical model, assuming that the majority of the mass loss is due to moisture loss, a significant difference in mass reduction coefficient occurs among mung bean sprouts and white radish sprouts due to the microgravity environment, and the mass retention effect of simulated microgravity is quantitatively evaluated utilizing mathematical models. Simulated microgravity, which varies significantly from conventional refrigeration, ethylene control, and modified atmosphere, was demonstrated effective as a novel method for preserving and maintaining the freshness of sprout vegetables. This founding will support long-term space flight missions by prolonging shelf life of sprout vegetables.


Subject(s)
Food Preservation/methods , Food Storage/methods , Vegetables/metabolism , Weightlessness , Colony Count, Microbial/methods , Food Microbiology/methods , Germination/physiology , Weightlessness Simulation/methods
15.
J Clin Neurosci ; 77: 142-147, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32386864

ABSTRACT

One of the major problems with walking encountered by patients with spastic hemiplegia is diminished toe clearance due to spasticity of their leg muscles. To improve their walking, a specialized robot assist for ankle movements (RE-Gait) has been utilized. The present study examined the neurophysiological effects whether spinal cord reciprocal Ia inhibition (RI) in the leg was altered by using RE-Gait. Sixteen patients with a clinical diagnosis of stroke were divided into the two groups, RE-Gait walking group (Group R) and normal (controlled) walking group (Group C). In each group, they walked on a flat floor for 15 min with or without RE-Gait. The depression of soleus (Sol) H-reflexes conditioned by common peroneal nerve stimuli with the conditioning-test (C-T) intervals of 1, 2, 3, and 4 ms were assessed before and immediately after each walking session. After the intervention, the LSM (SE) of Sol H-reflex amplitude with 1, 2 and 3 ms C-T interval conditions were significantly decreased in group R (1 ms: 88.15 (4.60), 2 ms: 86.37 (4.60), 3 ms: 89.68 (4.62)) compared to group C (1 ms: 105.57 (4.56), 2 ms: 100.89 (4.58), 3 ms: 107.72 (4.58)) [1 ms: p = 0.012, 2 ms: p = 0.035, 3 ms: p = 0.011]. Walking assistive robot that targets ankle movements might be a new rehabilitation tool for regulating spinal cord excitability.


Subject(s)
Exercise Therapy/methods , Exoskeleton Device , Gait , Hemiplegia/therapy , Orthopedic Equipment , Spinal Cord/physiopathology , Adult , Ankle/physiopathology , Exercise Therapy/instrumentation , Female , H-Reflex , Hemiplegia/rehabilitation , Humans , Male , Middle Aged , Muscle Spasticity , Muscle, Skeletal/physiopathology , Neural Inhibition , Peroneal Nerve/physiopathology
16.
Neurol Med Chir (Tokyo) ; 60(2): 83-93, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31956170

ABSTRACT

We analyzed the cell characteristics, neuroprotective, and transplantation effects of human cranial bone-derived mesenchymal stem cells (hcMSCs) in ischemic stroke model rats compared with human iliac bone-derived mesenchymal stem cells (hiMSCs). The expressions of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF ) as neurotrophic factors were analyzed in both MSCs. hiMSCs or hcMSCs were intravenously administered into ischemic stroke model rats at 3 or 24 h after middle cerebral artery occlusion (MCAO) and neurological function was evaluated. The survival rate of neuroblastoma × glioma hybrid cells (NG108-15) after 3 or 24 h oxidative or inflammatory stress and the neuroprotective effects of hiMSCs or hcMSCs-conditioned medium (CM) on 3 or 24 h oxidative or inflammatory stress-exposed NG108-15 cells were analyzed. The expressions of BDNF and VEGF were higher in hcMSCs than in hiMSCs. hcMSCs transplantation at 3 h after MCAO resulted in significant functional recovery compared with that in the hiMSCs or control group. The survival rate of stress-exposed NG108-15 was lower after 24 h stress than after 3 h stress. The survival rates of NG108-15 cells cultured with hcMSCs-CM after 3 h oxidative or inflammatory stress were significantly higher than in the control group. Our results suggest that hcMSCs transplantation in the early stage of ischemic stroke suppresses the damage of residual nerve cells and leads to functional recovery through the strong expressions of neurotrophic factors. This is the first report demonstrating a functional recovery effect after ischemic stroke following hcMSCs transplantation.


Subject(s)
Disease Models, Animal , Early Medical Intervention , Ischemic Stroke/surgery , Mesenchymal Stem Cell Transplantation/methods , Animals , Brain-Derived Neurotrophic Factor/metabolism , Humans , Ilium/cytology , Infarction, Middle Cerebral Artery/therapy , Infusions, Intravenous , Nerve Growth Factors/metabolism , Skull/cytology , Vascular Endothelial Growth Factor A/metabolism
17.
Virus Res ; 276: 197821, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31756357

ABSTRACT

In the next several decades, humans will explore deep space, including Mars. During long-term space flight, astronauts will be exposed to various physical stressors. Among these stressors, microgravity may compromise the immune system. Consistently, the reactivation of several latent herpesviruses has been reported in astronauts. Although herpesvirus infection status is determined by both cell-intrinsic and -extrinsic factors, it remains unclear which factors play major roles in the virus reactivation in microgravity. Here, using Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells, we found that KSHV is cell-intrinsically controlled in latency in microgravity. Innate immunity appeared to be unaffected in microgravity, while the expression of some restriction factors against KSHV, such as CTCF and AMPK, was upregulated. Collectively, the infected cells in microgravity can control KSHV in latency, possibly by unimpaired innate immunity and upregulated KSHV restriction factors. This is the first pilot study of the conflicts between cell-intrinsic defense systems and viruses in microgravity and provides fundamental information regarding host-virus interactions in microgravity.


Subject(s)
Gravitation , Herpesvirus 8, Human/genetics , Host Microbial Interactions , Sarcoma, Kaposi/virology , Virus Activation , Virus Latency , Cell Line, Tumor , Herpesvirus 8, Human/physiology , Humans , Immunity, Innate , Pilot Projects , Sarcoma, Kaposi/immunology , Virus Replication
18.
Stem Cell Res ; 41: 101601, 2019 12.
Article in English | MEDLINE | ID: mdl-31731179

ABSTRACT

Spinal cord ischemia is a potential complication of thoracoabdominal aortic surgery that may induce irreversible motor disability. We investigated the therapeutic efficacy of simulated microgravity-cultured mesenchymal stem cell (MSC) injection following spinal cord ischemia-reperfusion injury. Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), normal gravity-cultured MSC (MSC-1 G), and simulated microgravity-cultured MSC (MSC-MG) groups. Spinal cord ischemia was induced by transient balloon occlusion of the thoracic aorta, which was followed immediately by PBS or MSC injection into the left carotid artery. Hindlimb motor function was evaluated by the Basso-Beattie-Bresnahan (BBB) scale. Spinal cords were removed 1, 3, or 7 days post-injury for immunohistochemical staining and Western blot analysis. One day post-injury, a few infiltrating inflammatory cells and small vacuoles were observed without significant group differences, followed over several days by progressive spinal cord degeneration. Glial fibrillary acidic protein (GFAP)-positive (reactive) astrocyte numbers were increased in all three groups, and brain-derived neurotrophic factor (BDNF) was colocalized with GFAP-positive cells in spinal ventral horn. Animals in the MSC-MG group demonstrated greater BDNF-positive astrocyte numbers, reduced caspase-3-positive cell numbers, and superior motor recovery. Microgravity-cultured MSC-based therapy may improve functional recovery following spinal ischemia-reperfusion injury by promoting astrocytic BDNF release, thereby preventing apoptosis.


Subject(s)
Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Recovery of Function , Spinal Cord Diseases/therapy , Spinal Cord/metabolism , Weightlessness , Allografts , Animals , Ischemia/metabolism , Ischemia/pathology , Male , Mesenchymal Stem Cells/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/blood supply , Spinal Cord/pathology , Spinal Cord Diseases/metabolism , Spinal Cord Diseases/pathology
19.
Stem Cells Dev ; 28(23): 1552-1561, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31588849

ABSTRACT

Human mesenchymal stem cells (hMSCs) are considered to be able to adapt to environmental changes induced by gravity during cell expansion. In this study, we investigated neurogenic differentiation potential of passaged hMSCs under conventional gravity and simulated microgravity conditions. Immunostaining, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), and western blot analysis of neurogenic differentiation markers, neurofilament heavy (NF-H), and microtubule-associated protein 2 (MAP2) revealed that differentiated cells from the cells cultured under simulated microgravity conditions expressed higher neurogenic levels than those from conventional gravity conditions. The levels of NF-H and MAP2 in the cells from simulated microgravity conditions were consistent during passage culture, whereas cells from conventional gravity conditions exhibited a reduction of the neurogenic levels against an increase of their passage number. In growth culture, cells under simulated microgravity conditions showed less apical stress fibers over their nucleus with fewer cells having a polarization of lamin A/C than those under conventional gravity conditions. The ratio of lamin A/C to lamin B expression in the cells under simulated microgravity conditions was constant; however, cells cultured under conventional gravity conditions showed an increase in the lamin ratio during passages. Furthermore, analysis of activating H3K4me3 and repressive H3K27me3 modifications at promoters of neuronal lineage genes indicated that cells passaged under simulated microgravity conditions sustained the methylation during serial cultivation. Nevertheless, the enrichment of H3K27me3 significantly increased in the passaged cells cultured under conventional gravity conditions. These results demonstrated that simulated microgravity-coordinated cytoskeleton-lamin reorganization leads to suppression of histone modification associated with neurogenic differentiation capacity of passaged hMSCs.


Subject(s)
Cell Differentiation/genetics , Mesenchymal Stem Cells/cytology , Neurogenesis/genetics , Weightlessness Simulation , Bone Marrow Cells/cytology , Cell Culture Techniques , Cell Lineage/genetics , Cell Proliferation/radiation effects , Cytoskeleton/genetics , Gene Expression Regulation, Developmental/radiation effects , Histone Code/genetics , Humans , Lamin Type A/genetics , Microtubule-Associated Proteins/genetics , Neurofilament Proteins/genetics , Osteogenesis/radiation effects , Promoter Regions, Genetic/radiation effects
20.
PLoS One ; 14(7): e0219363, 2019.
Article in English | MEDLINE | ID: mdl-31323026

ABSTRACT

Although the biological systems in the human body are affected by the earth's gravity, information about the underlying molecular mechanisms is limited. For example, apoptotic signaling is enhanced in cancer cells subjected to microgravity. We reasoned that signaling regulated by p53 may be involved because of its role in apoptosis. Therefore, we aimed to clarify the molecular mechanisms of modified cis-diamminedichloroplatinum (CDDP)-sensitivity under simulated microgravity by focusing on p53-related cell death mechanisms. Immunoblotting analyses indicated that, under microgravity, CDDP-induced ATM/p53 signaling increased and caspase-3 was cleaved earlier. However, microgravity decreased the levels of expression of p53 targets BAX and CDKN1A. Interestingly, microgravity increased the PTEN, DRAM1, and PRKAA1 mRNA levels. However, microgravity decreased the levels of mTOR and increased the LC3-II/I ratio, suggesting the activation of autophagy. The CDDP-induced cleavage of caspase-3 was increased during the early phase in Group MG (+), and cleaved caspase-3 was detected even in Group MG (+) with constitutive expression of a mutant type of p53 (hereafter, "+" indicates CDDP treatment). These results interestingly indicate that microgravity altered CDDP sensitivity through activation of caspase-3 by p53-independent mechanism.


Subject(s)
Apoptosis/drug effects , Cisplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Weightlessness , AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Caspase 3/metabolism , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Hep G2 Cells , Humans , Membrane Proteins/metabolism , Mutation , PTEN Phosphohydrolase/metabolism , Signal Transduction/drug effects , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...